The Infrared Spectra of Anhydrous Transition-metal 125. Nitrates.

Bv C. C. Addison and B. M. GATEHOUSE.

Infrared spectra for the anhydrous nitrates of manganese, copper, zinc, and mercury indicate the presence of covalent metal-nitrate bonds. The anhydrous nitrates of cobalt, silver, cadmium, and lead have spectra characteristic of the nitrate ion. Frequencies for the hydrated nitrates of iron, cobalt, nickel, copper, zinc, and cadmium are given for comparison. Hydrated thorium nitrate exhibits bands characteristic of a co-ordinated nitrato-group.

A BRIEF report ¹ has already been made concerning the infrared spectra of some anhydrous transition-metal nitrates; this work is now described in detail. Following the observations that anhydrous cupric nitrate² and ferric and mercuric nitrates³ are volatile, the infrared spectra of some anhydrous transition-metal nitrates have been examined to obtain evidence concerning the covalent nature of the metal-to-nitrate bond in these compounds. Recent work on the infrared spectra of nitrato-co-ordination complexes ^{4,5} has shown that it is possible, by examination of the spectra, to distinguish between the nitrate ion and the covalently bound nitrato-group.

EXPERIMENTAL

Determination of Spectra.—A Grubb-Parsons double-beam infrared spectrometer, equipped with an S3A monochromator and a rock-salt prism, was used. The mulling agents were Nujol $(2-15 \mu)$ and hexachlorobutadiene. The latter was used for the region obscured by Nujol absorption bands.

The cell windows were of sodium chloride coated with polystyrene; ⁶ use of coated windows has been found to be essential for work with complex nitates 4 since some of these compounds react with the windows to give the spectrum of the nitrate ion.

The samples were prepared in a dry box which was dried (overnight) with phosphorus pentoxide and flushed out with dry nitrogen during use.

Preparation of Compounds.—Anhydrous copper nitrate² and zinc nitrate⁷ were prepared as already described. Manganese, cobalt, cadmium, and mercury nitrates were prepared from the metals and dinitrogen tetroxide-organic solvent mixtures. These reactions yielded metal nitrate-dinitrogen tetroxide addition compounds, from which the anhydrous metal nitrates were obtained by heating them under vacuum. Details of these preparations will be published in later papers.

RESULTS AND DISCUSSION

The frequencies of observed absorption bands are listed in Tables 1, 2, and 4. The anhydrous transition-metal nitrates examined can be divided into two groups, those whose infrared spectra indicate the presence of an ionic nitrate group (NO₃⁻, symmetry D_{3h}) and those whose spectra indicate the presence of co-ordinated nitrato-groups (ONO₂, symmetry C_{2x}). The latter group can be further subdivided, since anhydrous cupric and mercuric nitrates exhibit volatility,^{2,3} whereas anhydrous zinc and manganous nitrates do not. The frequencies of the ionic nitrates are listed in Table 1, those of the covalent nitrates in Table 2, and those of some hydrated transition-metal nitrates in Table 4.

Arising out of the different symmetries of the nitrate ion and the nitrato-group, two

- Addison and Hathaway, Proc. Chem. Soc., 1957, 19; J., 1958, 3099.
 Addison, Hathaway, and Logan, Proc. Chem. Soc., 1958, 51.
 Gatehouse, Livingstone, and Nyholm, J., 1957, 4222.

- ⁵ Gatehouse and Comyns, J., 1958, 3965.
 ⁶ Meister et al., Research Publications, Illinois Institute of Technology, 1948, 6, No. 1.
- ⁷ Addison, Lewis, and Thompson, J., 1951, 2829.

¹ Addison and Gatehouse, Chem. and Ind., 1958, 464.

Table	1. Anhydrous	s nitrates contain	ing the nitrate io	$n (\mathrm{NO}_3^{-}).$
	$Co(NO_3)_2$	AgNO ₃	$Cd(NO_3)_2$	$Pb(NO_3)_2$
	$2558 \mathrm{w}$		2545w	
	2494w			
	2475 w		2469m	
	1969w	2375w	$2410 \mathrm{sh}$	
	1887w			
	1859w		1000	
$\nu_1 + \nu_6$	1828w	1789w, sp }	1828m	
		1767w, sp }	1608w	
	1404-1		1502w, sp	
	1404sh	1969 1	1420m	1050
ν_3	1366s	1362vs, b	1381vs	1373 vs
			1348vs, b	
ν_1			1028w 906w	
	(799vs	801vs, sp	906w 805w, sh	0 9 6
ν_2	792s	801VS, SP	803w, sn 802w, sp	836w, sp 807vw
	762w	733s, sp	751m	726w
<i>v</i> ₄		• •		
vs very strong;	m medium; sh	shoulder; s stron	g; w weak; sp sha	arp; b broad.

TABLE 2. Anhydrous nitrates containing the nitrato-group (-ONO₂).

111255 11		into containing i		01(02)
	$Mn(NO_3)_2$	$Cu(NO_3)_2$	$Zn(NO_3)_2$	$Hg(NO_3)_2$
		2710w	2717w	
		2618w		
$\nu_2 + \nu_4$		2591w	2591w	
$2\nu_1$		2525w	2513w, sp	
$3\nu_6$	2469w	2404w)	2433w	2488w)
ů.		2392w }	2410w∫	$2432w^{2}$
$v_1 + v_4$	2320w	2381w		
1,4		2299w	2353w	
			2222w, b	
$2\nu_2$ (or $\nu_1 + \nu_6$)	2075w	2058w, b	2075w, b	
	1883w	,	, _	
$\nu_2 + \nu_6$	1812w	1792m	1802m	
- 2 1 - 6	1779w	1733m, sh		1773w
	1724w	1,000,012		11100
	1634s			
$2\nu_6$	1603vw	1592vs, sp	1600m, sp	1600w, sp
ν_4	Г Г	(1565vs	1000m, sp	1000w, sp
r4	1553vs	1546vs	1546s	1495m
	2100010	1504m, sp	1502m, sp	1450111
		1344vs, b	1359vs	
ν ₁	Γ1294 vs	(1289vs, sh	1300vs	1376s
-1	120115	{1264vs, b	100013	10705
ν_2	E F	(1038m, sh)	(1050sh	
¥2	$\lfloor 1019 vs \rfloor$	(1016s, b	1040s, sp	1027vs, b
	2101015	907w	905w	102105, 0
ν_6	۲ (805s	(795s, sh	6800s, sp	
r 6	$\{\frac{3003}{799vs}\}$	(787s, b	793s, sp	700
1 OF 1	759m	770s	(1905, sp	788vs, sp
v_3 or v_5	103111	1105	763s, sp	750m, b
			746m	

TABLE 3.

NO₃ [−]	$\begin{cases} Type \ ^{a} \\ Assignment \\ Frequency \ (cm.^{-1}) \end{cases}$	$\begin{matrix}\nu_1 & (A_1^{-1}) \\ \text{NO streto} \\ 1050 \end{matrix}$	ch ($ \nu_2 \left(A_2^{11}\right) Out-of-plane 831 $			$ \begin{array}{c} \nu_4 \ (E^1) \\ O_2 \ bend \\ 720 \end{array} $
$-ONO_2$	Type ^a Assignment	$ \nu_2 (A_1) $ NO stretch	$\nu_6 (B_2)$ Out-of- plane	$\nu_1 (A_1)$ NO ₂ stretch		$\nu_3 (A_1)$ NO ₂ bend	$\nu_5 (B_1)$ NO ₂ bend.
	Frequency ^b	1034 - 970		1290-1253	1531-1481		~ 713
^{<i>a</i>} See reference 8. ^{<i>b</i>} See references 4 and 5.							

different conventions are used in numbering the vibrations. To avoid any confusion the relations between the two sets of conventions are shown in Table 3. The symmetry types of the vibrations are given in parentheses and their approximate forms have been

⁸ Redlich and Nielson, J. Amer. Chem. Soc., 1943, 65, 654.

illustrated elsewhere.^{8,9} The frequencies given, and characteristic of the nitrato-group, were determined in earlier investigations.4,5

		-			-	
Compound	NO₃ [−] >	ν_3	$\boldsymbol{\nu}_1$	L	ν_2	ν_4
$Cu(NO_3)_2, 3H_2O$		1387vs	_	-	836w	
$Zn(NO_3)_2, 6H_2O$		1377 vs	_	-	835vs	
$Cd(NO_3)_2, 4H_2O$		1370vs, b		-	834vs	
$Fe(NO_3)_3,9H_2O$		1361 vs		-	835w	
$Co(NO_3)_2, 6H_2O$		1372vs		-	(836w	
3/2/2-					807vw	
Ni(NO ₃) ₂ ,6H ₂ O		1383vs	1048	vw	837s	
				• • •	0010	
	$-ONO_2$ \longrightarrow	ν_4	ν_1	ν_2	ν_6	v_3 or v_5
Th(NO ₃) ₄ ,4H ₂ O		(1520vs	(1323s	(1036sh	(811m	756m
		1506sh	1292vs	{1030vs	{ 805m	${744m}$
				(1000.0	COCOM	() 1 1 1 1 1

TABLE 4. Some hydrated transition-metal nitrate frequencies.

The anhydrous nitrates listed in Table 1 all have spectra characteristic of the nitrate ion, with a strong broad band at about 1360—1380 cm.⁻¹ arising from the doubly degenerate vibration v_{a} , a sharp band of varying intensity at about 800 cm.⁻¹ which arises from the out-of-plane bending mode v_2 , and a weak band at about 720—760 cm.⁻¹ which arises from the doubly degenerate vibration v_{4} . Only with cadmium nitrate was the totally symmetric vibration (v_1) apparent as a weak absorption, due presumably to some distortion of the nitrate ion resulting in a lowering of symmetry. A list of the frequencies of six hydrated transition-metal nitrates is given in the upper section of Table 4 for comparison with the ionic nitrate frequencies. It is interesting to note that on heating nickel nitrate hexahydrate in a drying pistol with phosphorus pentoxide some of the water was removed and very strong bands characteristic of the co-ordinated nitrato-group were then observed in the spectrum.

Anhydrous cupric nitrate has ² a vapour pressure of 3 mm. at 214° and is very stable in the vapour state at temperatures below 225° . The infrared spectrum (Table I) shows strong bands in the regions 1565 - 1546 cm⁻¹ (v₄) and 1289 - 1264 cm⁻¹ (v₁) which indicate the presence of co-ordinated nitrato-groups, $\overset{*}{4}$ of C_{2v} symmetry. A strong band at 1016 cm.⁻¹ corresponds to v_2 of the ONO₂ group. The fact that this compound exists in the vapour and that the spectrum indicates $C_{2\nu}$ symmetry for the nitrato-group indicates that the metal-nitrate bond possesses a considerable degree of covalent character. Since this study was commenced the mass spectrum of anhydrous cupric nitrate has been examined,¹⁰ and the compound shown to exist as a monomer in the vapour.

The spectra of anhydrous manganous, zinc, and mercuric nitrates (Table 2) show bands in the same regions as cupric nitrate, indicating that these compounds also contain the nitrato-group. The difference between the anhydrous nitrates of cadmium and zinc is consistent with the general observation that cadmium co-ordinates less readily with oxygen than does zinc. A large number of oxygen complexes of zinc are known but relatively few with cadmium; this has been regarded as evidence that the Cd-O bond is considerably weaker than the Zn-O bond.¹¹ Some tentative assignments of combination and overtone bands are also made in Table 2 on the basis of previous work.⁵

Thorium nitrate tetrahydrate was also examined, and its frequencies are listed in the lower part of Table 4. It clearly exhibits those bands characteristic of a co-ordinated nitrato-group, even in the hydrated form. Co-ordinative bonding of this nature was suggested by Katzin¹² to explain effects noted in a spectrophotometric study involving thorium and nitrate ions. Thorium is known to form many complex oxygen compounds, including double nitrates.¹³

¹³ Ref. 11, p. 641.

⁹ Cohn, Ingold, and Poole, J., 1952, 4272.

Porter, Schoonmaker, and Addison, Proc. Chem. Soc., 1959, 11.
 Sidgwick, "Chemical Elements and their Compounds," Oxford University Press, 1950, p. 281.
 Katzin, J. Chem. Phys., 1950, 18, 789.

Clearly, the nitrate compounds examined can be grouped into three categories, (a) those which are covalent and volatile, (b) those which are covalent and involatile, and (c) those which are ionic. The infrared spectra of these compounds are very useful in that they give the apparent symmetry of the nitrate group in the crystal, and a definite indication of the covalent or ionic nature of the bonding.

However, from data at present available it is clear that there is no simple correlation between the covalency of the bonding and electronic structure (particularly the number of d electrons) of the transition-metal concerned. Again, the fact that the nitrates of zinc, cadmium, and mercury are covalent, ionic, and covalent respectively shows that pronounced variations can occur within a vertical group. In any attempted correlation, the influence of crystal environment must also be taken into account. Work is therefore in hand to prepare a wider range of transition-metal nitrates, and to examine their infrared spectra and crystal structures.

CHEMISTRY DEPARTMENT, THE UNIVERSITY, NOTTINGHAM. WILLIAM RAMSAY AND RALPH FORSTER LABORATORIES, UNIVERSITY COLLEGE, LONDON.

[Received, July 16th, 1959.]